Because of the increasing accuracy of Deep Neural Networks (DNNs) on different tasks, a lot of real times systems are utilizing DNNs. These DNNs are vulnerable to adversarial perturbations and corruptions. Specifically, natural corruptions like fog, blur, contrast etc can affect the prediction of DNN in an autonomous vehicle. In real time, these corruptions are needed to be detected and also the corrupted inputs are needed to be de-noised to be predicted correctly. In this work, we propose CorrGAN approach, which can generate benign input when a corrupted input is provided. In this framework, we train Generative Adversarial Network (GAN) with novel intermediate output-based loss function. The GAN can denoise the corrupted input and generate benign input. Through experimentation, we show that up to 75.2% of the corrupted misclassified inputs can be classified correctly by DNN using CorrGAN.
翻译:由于深神经网络(DNN)在不同任务上的准确性不断提高,许多实时系统正在使用DNN。这些DNN很容易受到对抗性干扰和腐败。 具体地说, 雾、 模糊、 对比等自然腐败会影响自动车辆对DNN的预测。 实时需要发现这些腐败, 也需要取消腐败输入的命名, 以便正确预测。 在这项工作中, 我们提议了CorrGAN 方法, 提供腐败输入时可以产生良性输入。 在此框架内, 我们训练General Aversarial网络(GAN), 使用新型的中间产出损失功能。 GAN 能够将腐败输入的默认并生成良性输入。 我们通过实验, 显示高达75.2%的腐败错误输入可以通过 CorrGAN 被 DNN 正确分类 。