项目名称: CO2温室气体仿生光电催化还原的选择性转化与机制研究

项目编号: No.21477085

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 化学工业

项目作者: 赵国华

作者单位: 同济大学

项目金额: 95万元

中文摘要: 如何将CO2低能耗、高效率、高选择性转化为低碳能源燃料,是当前国际环境、能源等领域的前沿研究热点与难点。本项目拟开展CO2仿生光电催化还原为CH4碳氢燃料的研究。以高比表面导电碳气凝胶吸附材料为基体,可控生长{12-1}晶面占优Co3O4可见光电催化剂,并与仿生光合作用生物酶活性中心结构的金属钌配合物复合,在同一表面巧妙设计制备出兼备仿生酶催化、光电催化、电吸附调控一体化功能的电极材料。其仿生结构赋予了吸收光子-产生电子-传递电子与耦合质子-传递质子-循环递氢特定功能,将实现CO2的8电子转移催化还原反应,低还原电位下高选择性转化为CH4产物。研究将以光电催化材料结构设计-仿生光电催化功能-选择性高效转化效率为主线,深入阐明这一催化反应的构效机制、反应通道、光电能量协同机制、选择性控制和反应动力学过程等关键问题。这一研究思想新颖,将为CO2的控制与转化开辟一种绿色高效新方法。

中文关键词: CO2;温室气体;选择性转化;甲烷;仿生光电催化;多电子转移

英文摘要: How to transform CO2 greenhouse gas to low-carbon energy fuels with low energy cost, high efficiency and high selectivity is the hot and difficult topic for both international environment and energy fields in recent years. This project proposes a systematical research on biomimetic photoelectrocatalysis CO2 to hydrocarbon fuel CH4. In this project, {12-1} crystal face dominated Co3O4 catalyst possessing visible-light photoelectrocatalytic activity is firstly grown on the carbon aerogel with high surface area and excellent electric conductivity. Then, combing with biomimetic organometallic ruthenium complex compound, which has similar catalytic active sites with NADPH enzymes in plants photosynthesis, is utilized to finally design and fabricate a novel electrode material with integrative biomimetic enzyme catalysis, photoelectric catalysis and electrosorption function. The biomimetic enzyme structure of electrode generates specific functions of adsorption photons-generation photons-transformation photons and coupling protons-transformation protons. Finally this obtained electrode material can successfully transfer CO2 to CH4 product with high selectivity at low reduction potential through eight electron catalytic reducing and transferring reaction. This project will focus on the interactions between structural design of photoelectrocatalytic material, biomimetic photoelectrocatalysis activity and efficient conversion with high selectivity, and then deeply explore the significant questions like structure-activity mechanism, reaction channel, synergy mechanism between photic and electric energy, selective control and reaction dynamics. This research exhibits creative scientific idea and can develop green and effectively novel method both for controlling the greenhouse gas CO2 and for transfer it to beneficial fuels.

英文关键词: CO2greenhouse gas;selective conversion;CH4;biomimetic photoelectrocatalysis;multi-electron transform

成为VIP会员查看完整内容
0

相关内容

中国商用车电动化发展 研究报告,85页pdf
专知会员服务
12+阅读 · 2022年3月23日
工业人工智能驱动的流程工业智能制造
专知会员服务
96+阅读 · 2022年3月9日
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
零碳智慧园区白皮书(2022),66页pdf
专知会员服务
181+阅读 · 2022年2月17日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
139+阅读 · 2021年6月1日
专知会员服务
39+阅读 · 2021年5月12日
《碳中和愿景下储能产业发展白皮书》27页ppt
专知会员服务
65+阅读 · 2021年3月30日
2022年,我将入坑爆火的自动驾驶感知...
CVer
0+阅读 · 2021年12月23日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
【泡泡一分钟】点密度适应性点云配准
泡泡机器人SLAM
16+阅读 · 2018年5月28日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
小贴士
相关主题
相关VIP内容
中国商用车电动化发展 研究报告,85页pdf
专知会员服务
12+阅读 · 2022年3月23日
工业人工智能驱动的流程工业智能制造
专知会员服务
96+阅读 · 2022年3月9日
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
零碳智慧园区白皮书(2022),66页pdf
专知会员服务
181+阅读 · 2022年2月17日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
139+阅读 · 2021年6月1日
专知会员服务
39+阅读 · 2021年5月12日
《碳中和愿景下储能产业发展白皮书》27页ppt
专知会员服务
65+阅读 · 2021年3月30日
相关资讯
2022年,我将入坑爆火的自动驾驶感知...
CVer
0+阅读 · 2021年12月23日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
【泡泡一分钟】点密度适应性点云配准
泡泡机器人SLAM
16+阅读 · 2018年5月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员