Rapid advancements in artificial intelligence (AI) technology have brought about a plethora of new challenges in terms of governance and regulation. AI systems are being integrated into various industries and sectors, creating a demand from decision-makers to possess a comprehensive and nuanced understanding of the capabilities and limitations of these systems. One critical aspect of this demand is the ability to explain the results of machine learning models, which is crucial to promoting transparency and trust in AI systems, as well as fundamental in helping machine learning models to be trained ethically. In this paper, we present novel quantitative metrics frameworks for interpreting the predictions of classifier and regressor models. The proposed metrics are model agnostic and are defined in order to be able to quantify: i. the interpretability factors based on global and local feature importance distributions; ii. the variability of feature impact on the model output; and iii. the complexity of feature interactions within model decisions. We employ publicly available datasets to apply our proposed metrics to various machine learning models focused on predicting customers' credit risk (classification task) and real estate price valuation (regression task). The results expose how these metrics can provide a more comprehensive understanding of model predictions and facilitate better communication between decision-makers and stakeholders, thereby increasing the overall transparency and accountability of AI systems.


翻译:人工智能(AI)技术的迅速发展带来了许多新的治理和监管挑战。人工智能系统正在被整合到各种行业和部门,使决策者要求对这些系统的能力和局限性有一个全面和细致的了解。这一要求的一个重要方面是能够解释机器学习模型的结果,这对于促进AI系统的透明度和信任至关重要,对于帮助机器学习模型接受道德培训至关重要。本文提出了新的定量指标框架,用于解释分类和累进模型预测。拟议指标是模型,定义是为了能够量化:即基于全球和地方特征重要性分布的可解释性因素;对模型产出的特征影响变化;以及模型决定中特征互动的复杂性。我们利用公开提供的数据集,将我们提出的指标应用于侧重于预测客户信用风险(分类任务)和房地产价格估价(倒退任务)的各种机器学习模型模型。拟议指标是模型的模型,其定义是为了能够量化:即基于全球和地方特征重要性分布的可解释性因素;二。这些特征对模型产出的影响变化;三. 模型决定中特征互动的复杂性。我们利用公开的数据集,将我们提出的指标应用于侧重于预测客户信用风险(分类任务)和房地产价格估价(倒退任务)。结果揭示结果揭示了提高透明度,从而有助于对AI决定系统进行更全面的预测。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
专知会员服务
51+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
24+阅读 · 2019年11月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员