Sequence alignment is a fundamentally memory bound computation whose performance in modern systems is limited by the memory bandwidth bottleneck. Processing-in-memory architectures alleviate this bottleneck by providing the memory with computing competencies. We propose Alignment-in-Memory (AIM), a framework for high-throughput sequence alignment using processing-in-memory, and evaluate it on UPMEM, the first publicly-available general-purpose programmable processing-in-memory system. Our evaluation shows that a real processing-in-memory system can substantially outperform server-grade multi-threaded CPU systems running at full-scale when performing sequence alignment for a wide variety of algorithms, read lengths, and edit distance thresholds. We hope that our findings inspire more work on creating and accelerating bioinformatics algorithms for such real processing-in-memory systems.
翻译:序列对齐是一种基本的内存约束计算,现代系统中的性能受到内存带宽瓶颈的限制。 处理中的模拟结构通过提供计算能力的内存来缓解这一瓶颈。 我们提议使用模拟处理的高通量序列对齐框架AIM(AIM), 用于高通量序列对齐, 并在UPMEM上对其进行评价, UPMEM是第一个公开使用的通用可编程处理中模拟系统。 我们的评估显示, 真正的模拟处理系统在为多种算法、 阅读长度和编辑距离阈值进行序列对齐时, 能够大大优于完整运行的服务器级多读式CPU系统。 我们希望, 我们的发现能激发更多关于创建和加快这种实际处理中的系统的生物信息算法的工作。