Grammatical Error Correction (GEC) is a task of detecting and correcting grammatical errors in sentences. Recently, neural machine translation systems have become popular approaches for this task. However, these methods lack the use of syntactic knowledge which plays an important role in the correction of grammatical errors. In this work, we propose a syntax-guided GEC model (SG-GEC) which adopts the graph attention mechanism to utilize the syntactic knowledge of dependency trees. Considering the dependency trees of the grammatically incorrect source sentences might provide incorrect syntactic knowledge, we propose a dependency tree correction task to deal with it. Combining with data augmentation method, our model achieves strong performances without using any large pre-trained models. We evaluate our model on public benchmarks of GEC task and it achieves competitive results.
翻译:语法错误校正(GEC)是检测和纠正判决中语法错误的一项任务。最近,神经机器翻译系统已成为执行这项任务的流行方法。然而,这些方法缺乏在校正语法错误中发挥重要作用的合成知识。在这项工作中,我们建议采用一个语法引导GEC模型(SG-GEC),采用图形关注机制,利用依赖树综合知识。考虑到语法错误源句的依附树可能提供不正确的合成知识,我们建议用依赖树校正任务来处理。与数据增强方法相结合,我们的模型在不使用任何大型预先培训模型的情况下取得了很强的业绩。我们评估了我们关于GEC任务的公共基准的模型,并取得了竞争性的结果。