Contingency planning, wherein an agent generates a set of possible plans conditioned on the outcome of an uncertain event, is an increasingly popular way for robots to act under uncertainty. In this work, we take a game-theoretic perspective on contingency planning which is tailored to multi-agent scenarios in which a robot's actions impact the decisions of other agents and vice versa. The resulting contingency game allows the robot to efficiently coordinate with other agents by generating strategic motion plans conditioned on multiple possible intents for other actors in the scene. Contingency games are parameterized via a scalar variable which represents a future time at which intent uncertainty will be resolved. Varying this parameter enables a designer to easily adjust how conservatively the robot behaves in the game. Interestingly, we also find that existing variants of game-theoretic planning under uncertainty are readily obtained as special cases of contingency games. Lastly, we offer an efficient method for solving N-player contingency games with nonlinear dynamics and non-convex costs and constraints. Through a series of simulated autonomous driving scenarios, we demonstrate that plans generated via contingency games provide quantitative performance gains over game-theoretic motion plans that do not account for future uncertainty reduction.
翻译:针对机器人在不确定性环境下行动的越来越流行的情况规划方法是,机器人在不确定事件的结果下生成可能计划的一组条件规划。在这项工作中,我们采取了一种针对多智能体情况的博弈论视角,其中机器人的行动影响其他代理的决策,反之亦然。由此产生的情况博弈允许机器人通过生成多个可能的目的地来调整与其他代理的协调。情况游戏通过一个标量变量(表示未来某个时间意图不确定性将得到解决)进行参数化。改变这个参数可以使设计者轻松调整机器人在游戏中的行为保守程度。有趣的是,我们还发现现有的不确定性下的博弈论规划变体可以很容易地作为情况游戏的特殊案例来获得。最后,我们提供了一个有效的方法来求解具有非线性动态和非凸成本和约束的N-player情况游戏。通过一系列模拟自动驾驶的场景,我们证明了通过情况游戏生成的规划相对于不考虑未来不确定性减少的博弈论运动规划提供了量化的性能提升。