Provision of some autonomous functions to an agricultural vehicle would lighten the job of the operator but in doing so, the accuracy should not be lost to still obtain an optimal yield. Autonomous navigation of an agricultural vehicle involves the control of different dynamic subsystems, such as the yaw angle dynamics and the longitudinal speed dynamics. In this study, a proportional-integral-derivative controller is used to control the longitudinal velocity of the tractor. For the control of the yaw angle dynamics, a proportional-derivative controller works in parallel with a type-2 fuzzy neural network. In such an arrangement, the former ensures the stability of the related subsystem, while the latter learns the system dynamics and becomes the leading controller. In this way, instead of modeling the interactions between the subsystems prior to the design of model-based control, we develop a control algorithm which learns the interactions online from the measured feedback error. In addition to the control of the stated subsystems, a kinematic controller is needed to correct the errors in both the x- and the y- axis for the trajectory tracking problem of the tractor. To demonstrate the real-time abilities of the proposed control scheme, an autonomous tractor is equipped with the use of reasonably priced sensors and actuators. Experimental results show the efficacy and efficiency of the proposed learning algorithm.
翻译:向农业车辆提供某些自主功能会减轻操作员的工作,但这样做时,不应失去准确性,以便仍能取得最佳收成。农业车辆的自主导航涉及控制不同的动态子系统,如亚线角度动态和纵向速度动态。在这项研究中,使用一个比例-整体-方向控制器来控制拖拉机的纵向速度。为了控制亚线角动态,需要有一个比例-方向控制器与二型模糊神经网络平行工作。在这种安排中,前者确保相关子系统的稳定性,而后者则学习系统动态并成为主要控制器。这样,我们用模型控制设计之前的系统之间互动模式,而不是模型控制前的模型,我们开发一种控制算法,从测量的反馈错误中学习在线互动。除了对所述子系统的控制外,还需要一个运动控制器来纠正牵引线跟踪问题的X和y轴中的错误。为了证明实时控制器的稳定性,后者学习系统动态,而后者成为主要控制器。通过这种方式,我们没有在设计模型控制之前对各子系统之间的相互作用进行建模的模型的模型,因此,要展示一个可操作的实时操作的系统效率,同时展示一个可操作系统。