This paper introduced the space mission DikpolaSat Mission, how this research fits into the mission, and the importance of having a trained DNN model instead of the usual GN&C functionality. This paper shows how the controller demonstration is carried out by having the spacecraft follow a desired path, specified in the referenced model. Increases can be made by examining the route used to construct a DNN and understanding the effects of various activating functions on system efficiency. The obstacle avoidance algorithm is built into the control features to respond spontaneously using inputs from the neural network for collision avoidance while optimizing the modified trajectory. The action of a neural network to control the adaptive nature of the nonlinear mechanisms in the controller will make the control system capable of handling multiple nonlinear events and also uncertainties that have not been induced in the control algorithm. Multiple algorithms for optimizing flight controls and fuel consumption can be implemented using knowledge of flight dynamics in trajectory and also in the event of obstacle avoidance. This paper also explains how a DNN can learn to control the flight path and make the system more reliable with each launch, thereby improving the chances of predicting collisions of space objects. The data released from this research is used to design more advanced DNN model capable of predicting other orbital events as well.


翻译:本文介绍了空间飞行任务DikpolaSat 任务,该研究如何与飞行任务相适应,以及使用经过培训的DNN模型而不是通常的GN & C功能的重要性。本文展示了控制器演示是如何通过航天器遵循所引用模型所指定的预期路径进行的。可以通过检查用于建造DNN的路线和了解各种启动功能对系统效率的影响而提高控制器演示。障碍避免算法被纳入控制功能中,以便利用神经网络的输入进行自动反应,避免碰撞,同时优化经修改的轨道。神经网络对控制器中非线性机制的适应性进行控制的行动将使控制系统能够处理多个非线性事件和控制算法中未引出的不确定性。利用轨道飞行动态知识以及避免障碍的情况,可以实施优化飞行控制和燃料消耗的多种算法。本文还解释了DNN如何学会控制飞行路径,使每发射一次系统更加可靠,从而增加预测空间物体碰撞的可能性。从这一研究中释放的数据将被用于设计更先进的轨道模型。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF ADL92:自然语言理解:新学习方法及知识
中国计算机学会
5+阅读 · 2018年8月21日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月23日
PoF: Proof-of-Following for Vehicle Platoons
Arxiv
0+阅读 · 2021年7月21日
Arxiv
7+阅读 · 2020年8月7日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF ADL92:自然语言理解:新学习方法及知识
中国计算机学会
5+阅读 · 2018年8月21日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员