Fuzzy Epistemic Logic is an important formalism for approximate reasoning. It extends the well known basic propositional logic BL, introduced by H\'ajek, by offering the ability to reason about possibility and necessity of fuzzy propositions. We consider an algebraic approach to study this logic, introducing Epistemic BL-algebras. These algebras turn to be a generalization of both, Pseudomonadic Algebras introduced by \cite{Bez2002} and serial, euclidean and transitive Bi-modal G\"odel Algebras proposed by \cite{CaiRod2015}. We present the connection between this class of algebras and fuzzy possibilistic frames, as a first step to solve an open problem proposed by H\'ajek \cite[chap. ~8]{HajekBook98}.
翻译:Fuzzy Epistemic Lologic 是近似推理的一个重要形式主义。 它扩展了H\'ajek提出的众所周知的基本理论逻辑 BL, 提供了解释模糊推理可能性和必要性的能力。 我们考虑一种代数法方法来研究这一逻辑, 引入了闪烁 BL- algebras。 这些代数转而成为两者的概括, 由\cite{Bez2002} 引入的普塞多莫纳迪代数以及由\cite{Bez2002} 提议的序列、 euclidean 和中转性双模 G\'odel Algebras 。 我们展示了这一类代数和fuzzy posiblicistic 框架之间的联系, 作为解决H\'ajeek\cite提出的一个公开问题的第一步 [第~ 8章] {HekBook98}。