Recent deep learning models have achieved high performance in speech enhancement; however, it is still challenging to obtain a fast and low-complexity model without significant performance degradation. Previous knowledge distillation studies on speech enhancement could not solve this problem because their output distillation methods do not fit the speech enhancement task in some aspects. In this study, we propose multi-view attention transfer (MV-AT), a feature-based distillation, to obtain efficient speech enhancement models in the time domain. Based on the multi-view features extraction model, MV-AT transfers multi-view knowledge of the teacher network to the student network without additional parameters. The experimental results show that the proposed method consistently improved the performance of student models of various sizes on the Valentini and deep noise suppression (DNS) datasets. MANNER-S-8.1GF with our proposed method, a lightweight model for efficient deployment, achieved 15.4x and 4.71x fewer parameters and floating-point operations (FLOPs), respectively, compared to the baseline model with similar performance.


翻译:最近深层次的学习模式在增强语言能力方面取得了很高的成绩;然而,在不出现显著的性能退化的情况下,获得快速和低复杂性模式仍是一项挑战; 以往关于增强语言能力的知识蒸馏研究无法解决这个问题,因为其产出蒸馏方法在某些方面不符合增强语言能力的任务; 在本研究中,我们提议采用多视调调换(MV-AT),即基于地貌的蒸馏,以便在时间范围内获得有效的增强语言能力模式; 根据多视特征提取模型,MV-AT将教师网络的多视知识传输到学生网络,而不增加参数; 实验结果显示,拟议的方法一贯地改进了瓦伦蒂和深噪音抑制(DNS)数据集不同尺寸学生模型的性能。 MANNER-S-8.1GF与我们拟议的方法,即高效部署的轻量模型,分别实现了15.4x和4.71x参数和浮点操作(FLOPs),与类似性能的基线模型相比,分别减少了15.4x和4.71x参数和浮点操作(FLOPs)。

0
下载
关闭预览

相关内容

语音增强是指当语音信号被各种各样的噪声干扰、甚至淹没后,从噪声背景中提取有用的语音信号,抑制、降低噪声干扰的技术。一句话,从含噪语音中提取尽可能纯净的原始语音。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月6日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员