By adding human-imperceptible noise to clean images, the resultant adversarial examples can fool other unknown models. Features of a pixel extracted by deep neural networks (DNNs) are influenced by its surrounding regions, and different DNNs generally focus on different discriminative regions in recognition. Motivated by this, we propose a patch-wise iterative algorithm -- a black-box attack towards mainstream normally trained and defense models, which differs from the existing attack methods manipulating pixel-wise noise. In this way, without sacrificing the performance of white-box attack, our adversarial examples can have strong transferability. Specifically, we introduce an amplification factor to the step size in each iteration, and one pixel's overall gradient overflowing the $\epsilon$-constraint is properly assigned to its surrounding regions by a project kernel. Our method can be generally integrated to any gradient-based attack methods. Compared with the current state-of-the-art attacks, we significantly improve the success rate by 9.2\% for defense models and 3.7\% for normally trained models on average. Our code is available at \url{https://github.com/qilong-zhang/Patch-wise-iterative-attack}


翻译:通过在清洁图像中添加人类无法察觉的噪音,由此产生的对抗性实例可以愚弄其他未知模型。 深神经网络(DNNs)提取的像素的特性受到周围区域的影响, 而不同的DNNs通常侧重于不同的歧视区域。 受此驱动, 我们提出一种偏差的迭代算法 -- -- 黑箱攻击到通常经过训练的主流和防御模式, 这与操纵像素噪音的现有攻击方法不同。 这样, 在不牺牲白箱攻击的性能的情况下, 我们的对抗性例子可以具有很强的可转移性。 具体地说, 我们引入了一个放大系数, 使每个循环的级大小受到影响, 不同的DNNNNP普遍侧重于不同的歧视区域。 受此驱动, 我们的计算方法一般可以与任何以梯度为基础的攻击方法相融合。 与当前状态- 艺术攻击相比, 我们大幅提高了防御模型的成功率9. 2 和正常训练模型3. 7 。 我们的代码可以在项目内核/ SGI/ / QRANS/ 。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
专知会员服务
44+阅读 · 2020年10月31日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
已删除
将门创投
12+阅读 · 2017年10月13日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
VIP会员
相关资讯
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
已删除
将门创投
12+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员