It has been experimentally observed that the efficiency of distributed training with stochastic gradient (SGD) depends decisively on the batch size and -- in asynchronous implementations -- on the gradient staleness. Especially, it has been observed that the speedup saturates beyond a certain batch size and/or when the delays grow too large. We identify a data-dependent parameter that explains the speedup saturation in both these settings. Our comprehensive theoretical analysis, for strongly convex, convex and non-convex settings, unifies and generalized prior work directions that often focused on only one of these two aspects. In particular, our approach allows us to derive improved speedup results under frequently considered sparsity assumptions. Our insights give rise to theoretically based guidelines on how the learning rates can be adjusted in practice. We show that our results are tight and illustrate key findings in numerical experiments.
翻译:实验发现,使用随机梯度(SGD)进行分布式培训的效率决定性地取决于批量大小,(在不同步执行中)取决于梯度的坡度。 特别是,人们观察到,超过一定批量大小的加速饱和度和(或)当延迟过大时,这种饱和度超过了一定批量大小和(或)延迟过大。 我们确定了一个数据依赖参数,可以解释这两种环境的加速饱和度。 我们的全面理论分析,对于强电流、电流和非电流设置,我们统一和笼统的先前工作方向,通常只关注这两个方面中的一个方面。特别是,我们的方法使我们能够在经常考虑的宽度假设下取得更好的加速结果。我们的洞察力产生了关于在实践中如何调整学习率的理论性指导方针。我们显示,我们的成果是紧凑的,并展示了数字实验中的关键结果。