In functional programming languages, generalized algebraic data types (GADTs) are very useful as the unnecessary pattern matching over them can be ruled out by the failure of unification of type arguments. In dependent type systems, this is usually called indexed types and it's particularly useful as the identity type is a special case of it. However, pattern matching over indexed types is very complicated as it requires term unification in general. We study a simplified version of indexed types (called simpler indexed types) where we explicitly specify the selection process of constructors, and we discuss its expressiveness, limitations, and properties.


翻译:在功能性编程语言中,通用代数数据类型(GADTs)非常有用,因为由于类型参数的统一失败,可以排除不必要地比对数据类型的模式。在依赖性类型系统中,这通常被称为索引型,特别有用,因为身份类型是其特例。然而,模式比对指数型非常复杂,因为它一般需要术语的统一。我们研究了一种简化的索引型(所谓的简化索引型),我们明确指定了构建者的选择过程,我们讨论了其明确性、局限性和属性。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
TextCNN大牛Kim《深度无监督学习句法结构分析》,88页ppt
专知会员服务
29+阅读 · 2021年1月13日
【DeepMind】强化学习教程,83页ppt
专知会员服务
157+阅读 · 2020年8月7日
专知会员服务
167+阅读 · 2020年7月27日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
16+阅读 · 2020年4月28日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Arxiv
0+阅读 · 2021年6月3日
Arxiv
0+阅读 · 2021年6月2日
VIP会员
相关VIP内容
专知会员服务
77+阅读 · 2021年3月16日
TextCNN大牛Kim《深度无监督学习句法结构分析》,88页ppt
专知会员服务
29+阅读 · 2021年1月13日
【DeepMind】强化学习教程,83页ppt
专知会员服务
157+阅读 · 2020年8月7日
专知会员服务
167+阅读 · 2020年7月27日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
16+阅读 · 2020年4月28日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员