We revisit two well-established verification techniques, $k$-induction and bounded model checking (BMC), in the more general setting of fixed point theory over complete lattices. Our main theoretical contribution is latticed $k$-induction, which (i) generalizes classical $k$-induction for verifying transition systems, (ii) generalizes Park induction for bounding fixed points of monotonic maps on complete lattices, and (iii) extends from naturals $k$ to transfinite ordinals $\kappa$, thus yielding $\kappa$-induction. The lattice-theoretic understanding of $k$-induction and BMC enables us to apply both techniques to the fully automatic verification of infinite-state probabilistic programs. Our prototypical implementation manages to automatically verify non-trivial specifications for probabilistic programs taken from the literature that - using existing techniques - cannot be verified without synthesizing a stronger inductive invariant first.
翻译:我们在更笼统的固定点理论设置中,重新审视了两种成熟的核查技术,即用美元上岗和捆绑模式检查(BMC)。我们的主要理论贡献是用美元上岗,这(一) 概括了典型的美元上岗,用于核实过渡系统;(二) 概括了公园将单一地图固定点捆绑在完整拖车上的感应,以及(三) 从天然的美元扩大到转成或转成的硬体的美元,从而产生美元上岗。 对美元上岗和BMC的拉蒂理论理解使我们能够将这两种技术应用于完全自动核查无穷国家不稳定方案。 我们的原型实施可以自动核查从文献中提取的预测性方案的非三角性规格,即使用现有技术,如果不先合成更强的演化变量,就无法核实。