A geometric numerical method for simulating suspensions of spherical and non-spherical particles with Stokes drag is proposed. The method combines divergence-free matrix-valued radial basis function interpolation of the fluid velocity field with a splitting method integrator that preserves the sum of the Lyapunov spectrum while mimicking the centrifuge effect of the exact solution. We discuss how breaking the divergence-free condition in the interpolation step can erroneously affect how the volume of the particulate phase evolves under numerical methods. The methods are tested on suspensions of $10^4$ particles evolving in discrete cellular flow field. The results are that the proposed geometric methods generate more accurate and cost-effective particle distributions compared to conventional methods.
翻译:提出了模拟球状和非球状粒子悬浮的几何数字方法,以斯托克斯拖力模拟。该方法结合了无差异矩阵估价的辐射基,将流体速度场与分解方法集成器的内插功能结合起来,该集成器在模仿精确解决方案的离心机效应的同时,保留了莱普诺夫谱系的总和。我们讨论了在内插步骤打破无差异状态如何在数字方法下错误地影响颗粒阶段的体积的演变。这些方法在离散细胞流场中10 4美元粒子的悬浮上进行测试。结果显示,拟议的几何方法产生的粒子分布比常规方法更准确,成本效益更高。