In the online bin packing problem, a sequence of items is revealed one at a time, and each item must be packed into an available bin instantly upon its arrival. In this paper, we revisit the problem under a setting where the total number of items T is known in advance, also known as the closed online bin packing problem. Specifically, we study both the stochastic model and the random permutation model. We develop and analyze an adaptive algorithm that solves an offline bin packing problem at geometric time intervals and uses the offline optimal solution to guide online packing decisions. Under both models, we show that the algorithm achieves C\sqrt{T} regret (in terms of the number of used bins) compared to the hindsight optimal solution, where C is a universal constant (<= 13) that bears no dependence on the underlying distribution or the item sizes. The result shows the lower bound barrier of \Omega(\sqrt{T \log T}) in Shor (1986) can be broken with solely the knowledge of the horizon T, but without a need of knowing the underlying distribution. As to the algorithm analysis, we develop a new approach to analyzing the packing dynamic using the notion of exchangeable random variables. The approach creates a symmetrization between the offline solution and the online solution, and it is used to analyze both the algorithm performance and various benchmarks related to the bin packing problem. For the latter one, our analysis provides an alternative (probably simpler) treatment and tightens the analysis of the asymptotic benchmark of the stochastic bin packing problem in Rhee and Talagrand (1989a,b). As the analysis only relies on a symmetry between the offline and online problems, the algorithm and benchmark analyses can be naturally extended from the stochastic model to the random permutation model.


翻译:在在线垃圾包装问题中, 一次一次显示一个项目序列, 每个项目必须在到达时立即被打包到可用的垃圾桶中。 在本文中, 我们在一个设置下重新审视问题, T项的总数是事先知道的, 也就是封闭的在线垃圾包装问题。 具体地说, 我们既研究随机分析模型, 也研究随机调整模型。 我们开发并分析一个适应性算法, 在几何时间间隔解决离线包装问题, 并使用离线最佳解决方案来指导在线包装决定。 在两种模型中, 我们显示算法在使用 C\ sqrart{T} 之后, 我们发现, 算法实现了 C\ sqright 的简化处理基准, 与后见的最佳解决方案相比, 我们重现的计算法分析( \\ 13) ) 是一个通用常态常态的常态( 13) 。 结果显示 \ Omega (\ sqrort{T\log T} ) 的下界屏障障碍只能从对地平面 T 进行解算法和离线分析, 但是, 我们不需要了解基础的分布。 。 对于算法分析, 我们的轨法分析是用来分析, 和内部的解算法分析, 的解算法分析,, 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
已删除
将门创投
11+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月4日
Arxiv
0+阅读 · 2022年2月4日
VIP会员
相关VIP内容
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
11+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员