We define a broader family of corruption processes that generalizes previously known diffusion models. To reverse these general diffusions, we propose a new objective called Soft Score Matching that provably learns the score function for any linear corruption process and yields state of the art results for CelebA. Soft Score Matching incorporates the degradation process in the network. Our new loss trains the model to predict a clean image, \textit{that after corruption}, matches the diffused observation. We show that our objective learns the gradient of the likelihood under suitable regularity conditions for a family of corruption processes. We further develop a principled way to select the corruption levels for general diffusion processes and a novel sampling method that we call Momentum Sampler. We show experimentally that our framework works for general linear corruption processes, such as Gaussian blur and masking. We achieve state-of-the-art FID score $1.85$ on CelebA-64, outperforming all previous linear diffusion models. We also show significant computational benefits compared to vanilla denoising diffusion.
翻译:我们定义了更广泛的腐败过程, 将先前已知的传播模式加以概括。 为了扭转这些普遍的传播模式, 我们提议了一个新的目标, 名为 Soft 评分匹配, 以可以理解的方式学习任何线性腐败过程的评分函数, 并产生切莱巴的艺术结果。 Soft 评分匹配包含网络的退化过程。 我们的新损失使模型能够预测一个干净的图像,\ textit{, 在腐败之后的这个模型, 与分散的观察相匹配。 我们显示, 我们的目标在适当的常规条件下, 了解腐败过程大家庭中可能性的梯度。 我们进一步开发了一种原则性的方法, 选择一般传播过程的腐败程度, 以及一种我们称之为“ Momentum 采样器” 的新型抽样方法。 我们实验性地显示, 我们的框架在一般的线性腐败过程, 比如高斯模糊和遮掩罩。 我们在CelebA- 64上实现了最先进的国际开发公司评分185美元, 超过了以往的线性传播模式。 我们还展示了与香拉去除扩散相比的重大计算效益。