Segmentation of head and neck (H\&N) tumours and prediction of patient outcome are crucial for patient's disease diagnosis and treatment monitoring. Current developments of robust deep learning models are hindered by the lack of large multi-centre, multi-modal data with quality annotations. The MICCAI 2021 HEad and neCK TumOR (HECKTOR) segmentation and outcome prediction challenge creates a platform for comparing segmentation methods of the primary gross target volume on fluoro-deoxyglucose (FDG)-PET and Computed Tomography images and prediction of progression-free survival in H\&N oropharyngeal cancer.For the segmentation task, we proposed a new network based on an encoder-decoder architecture with full inter- and intra-skip connections to take advantage of low-level and high-level semantics at full scales. Additionally, we used Conditional Random Fields as a post-processing step to refine the predicted segmentation maps. We trained multiple neural networks for tumor volume segmentation, and these segmentations were ensembled achieving an average Dice Similarity Coefficient of 0.75 in cross-validation, and 0.76 on the challenge testing data set. For prediction of patient progression free survival task, we propose a Cox proportional hazard regression combining clinical, radiomic, and deep learning features. Our survival prediction model achieved a concordance index of 0.82 in cross-validation, and 0.62 on the challenge testing data set.
翻译:头部和颈部肿瘤的分解和病人结果的预测对于病人的疾病诊断和治疗监测至关重要。目前,由于缺少具有质量说明的大型多中心、多模式数据,阻碍了强有力的深层次学习模型的发展。MICCAI 2021 HEAD和 NecK TumOR (HECKtor) 分解和结果预测挑战为比较含氟脱氧甘蔗(FDG)-PET和Comput Tomed 肿瘤图象的分解方法提供了一个平台,用于比较含氟脱氧甘油(FDG)-PET的主要总目标体积的分解方法,并用于预测H ⁇ -N 或眼部癌症的无进展生存。在分解任务中,我们建议建立一个基于编码器-分解器结构的新网络,该结构具有全面的跨层和内部连接。此外,我们使用调质随机随机字段作为改进预测分解图的模型步骤。我们为肿瘤分解而培训了多个神经网络,并且这些分解正在形成一个平均的DNA分解,用于实现平均的DNA分解, 血压 血压 血压 血压