Light-based adversarial attacks use spatial augmented reality (SAR) techniques to fool image classifiers by altering the physical light condition with a controllable light source, e.g., a projector. Compared with physical attacks that place hand-crafted adversarial objects, projector-based ones obviate modifying the physical entities, and can be performed transiently and dynamically by altering the projection pattern. However, subtle light perturbations are insufficient to fool image classifiers, due to the complex environment and project-and-capture process. Thus, existing approaches focus on projecting clearly perceptible adversarial patterns, while the more interesting yet challenging goal, stealthy projector-based attack, remains open. In this paper, for the first time, we formulate this problem as an end-to-end differentiable process and propose a Stealthy Projector-based Adversarial Attack (SPAA) solution. In SPAA, we approximate the real Project-and-Capture process using a deep neural network named PCNet, then we include PCNet in the optimization of projector-based attacks such that the generated adversarial projection is physically plausible. Finally, to generate both robust and stealthy adversarial projections, we propose an algorithm that uses minimum perturbation and adversarial confidence thresholds to alternate between the adversarial loss and stealthiness loss optimization. Our experimental evaluations show that SPAA clearly outperforms other methods by achieving higher attack success rates and meanwhile being stealthier, for both targeted and untargeted attacks.
翻译:光基对抗性攻击使用空间增强的现实(SAR)技术来欺骗图像分类者,改变物理光亮状态,使用可控的光源,例如投影仪。与放置手制对抗物体的物理攻击相比,投影仪可以避免改变物理实体,并且可以通过改变投影模式来迅速和动态地进行。然而,由于环境复杂,项目和捕捉过程复杂,微小的光突扰不足以愚弄图像分类者。因此,现有方法侧重于预测明显可见的对抗性攻击模式,而更有趣但具有挑战性的目标,即隐性、更精确的投影器攻击,仍然开放。在本文中,我们首次将这一问题设计成一个端对端的不同过程,并提议一个基于隐性投影的反向攻击(SPA)解决方案。在SPAA中,我们利用名为PCNet的深层神经网络,然后将PCNet纳入基于投影机的替代式攻击模式的优化,这样产生的对抗性攻击目标、隐性、更精确的投影的投影性攻击率是实际的,最后,我们用隐性、最接近的对称的对称的对称的对称的对称的对称的对称的对称的对称的对称的对称的对称的对称的对称的对称的对称,在一次的对称的对称式攻击中,让我们的对称的对称的对准的对准的对准的对准的对准的对准中,最终的对准的对准的对准的对准的对准的对准的对准的对准将产生一种对准的对准,最终的对准的对准的对准的对准的对准的对准的对准的对准,最终的对准,最终的对准在我们的对准的对准的对准的对准的对准的对准,最终的对准的对准的对准,最后的对准将产生一种对准将产生一种的对准的对准的对准的对准将使我们的对准将使我们的对准的对准的对准的对准的对准的对准将使我们的对准将使我们的对准的对准的对准的对准的对准的对准的对准将使我们的对准