We discuss local linear smooth backfitting for additive non-parametric models. This procedure is well known for achieving optimal convergence rates under appropriate smoothness conditions. In particular, it allows for the estimation of each component of an additive model with the same asymptotic accuracy as if the other components were known. The asymptotic discussion of local linear smooth backfitting is rather complex because typically an overwhelming notation is required for a detailed discussion. In this paper we interpret the local linear smooth backfitting estimator as a projection of the data onto a linear space with a suitably chosen semi-norm. This approach simplifies both the mathematical discussion as well as the intuitive understanding of properties of this version of smooth backfitting.
翻译:我们讨论对添加非参数模型进行局部线性平滑调整的问题。 这个程序在适当的平滑条件下实现最佳趋同率方面是众所周知的。 特别是, 它允许对添加模型的每个组成部分进行估算, 与其他组成部分一样, 与已知的其他组成部分一样, 也具有相同的微微精确性。 对本地线性平滑调整的无症状讨论相当复杂, 因为通常需要用压倒性的符号进行详细讨论。 在本文中, 我们将本地线性平滑的线性平滑估计仪解释为将数据投向线性空间的预测, 并配有适当选择的半温度。 这种方法简化了数学讨论以及对这一版本的光滑反配特性的直观理解。