Modelling the temperature of Electric Vehicle (EV) batteries is a fundamental task of EV manufacturing. Extreme temperatures in the battery packs can affect their longevity and power output. Although theoretical models exist for describing heat transfer in battery packs, they are computationally expensive to simulate. Furthermore, it is difficult to acquire data measurements from within the battery cell. In this work, we propose a data-driven surrogate model (LiFe-net) that uses readily accessible driving diagnostics for battery temperature estimation to overcome these limitations. This model incorporates Neural Operators with a traditional numerical integration scheme to estimate the temperature evolution. Moreover, we propose two further variations of the baseline model: LiFe-net trained with a regulariser and LiFe-net trained with time stability loss. We compared these models in terms of generalization error on test data. The results showed that LiFe-net trained with time stability loss outperforms the other two models and can estimate the temperature evolution on unseen data with a relative error of 2.77 % on average.
翻译:电动车辆电池(EV)的温度模型是EV制造的基本任务。电池包中的极端温度可能影响其寿命和功率输出。虽然存在用来描述电池包中热传输的理论模型,但它们在计算上非常昂贵。此外,很难从电池电池组中获取数据测量数据。在这项工作中,我们提出了一个数据驱动的代孕模型(LiFe-net),该模型使用易于获取的驱动诊断来估计电池温度,以克服这些局限性。该模型包括神经操作器和传统的数字集成计划,以估计温度演变。此外,我们建议了两个基准模型的进一步变异:LiFe-net在经过定期处理和LiFe-net的训练后将失去时间稳定性。我们在测试数据中将这些模型进行了一般化误差的比较。结果显示,经过时间稳定性损失培训的LiFe-net比其他两个模型要强得多,并且可以估计以平均2.77%的相对误差的无形数据的温度演变。