When controlling multi-agent systems, the trade-off between performance and scalability is a major challenge. Here, we address this difficulty by using mean field games (MFGs), which is a framework that deduces the macroscopic dynamics describing the density profile of agents from their microscopic dynamics. To effectively use the MFG, we propose a model predictive MFG (MP-MFG), which estimates the agent population density profile with using kernel density estimation and manages the input generation with model predictive control. The proposed MP-MFG generates control inputs by monitoring the agent population at each time step, and thus achieves higher robustness than the conventional MFG. Numerical results show that the MP-MFG outperforms the MFG when the agent model has modeling errors or the number of agents in the system is small.
翻译:当控制多试剂系统时,性能和可缩放性之间的权衡是一个重大挑战。在这里,我们通过使用平均野外游戏(MFGs)来解决这一难题,这个框架可以推断出从微显性动态中描述物剂密度的宏观动态。为了有效地使用MFG,我们提议了一个模型预测MFG(MP-MFG),该模型使用内核密度估计来估计物剂人口密度,并以模型预测控制来管理输入生成。拟议的MP-MFG通过监测每次步骤的物剂数量来产生控制投入,从而实现比常规MFG更强的强。 数值结果显示,当该物剂模型有误或系统中的物剂数量很小时,MP-MFG(MP-MFG)比MFG(MFG)要优于MFG(MFG ) 。