The volume of scientific publications in organizational research becomes exceedingly overwhelming for human researchers who seek to timely extract and review knowledge. This paper introduces natural language processing (NLP) models to accelerate the discovery, extraction, and organization of theoretical developments (i.e., hypotheses) from social science publications. We illustrate and evaluate NLP models in the context of a systematic review of stakeholder value constructs and hypotheses. Specifically, we develop NLP models to automatically 1) detect sentences in scholarly documents as hypotheses or not (Hypothesis Detection), 2) deconstruct the hypotheses into nodes (constructs) and links (causal/associative relationships) (Relationship Deconstruction ), and 3) classify the features of links in terms causality (versus association) and direction (positive, negative, versus nonlinear) (Feature Classification). Our models have reported high performance metrics for all three tasks. While our models are built in Python, we have made the pre-trained models fully accessible for non-programmers. We have provided instructions on installing and using our pre-trained models via an R Shiny app graphic user interface (GUI). Finally, we suggest the next paths to extend our methodology for computer-assisted knowledge synthesis.


翻译:组织研究的科学出版物数量对于寻求及时提取和审查知识的人类研究人员来说,其数量极为庞大。本文介绍了自然语言处理模式,以加速社会科学出版物的理论发展(即假设)的发现、提取和组织。我们在系统审查利益攸关方价值结构和假设(积极、消极和非线性分类)的背景下,说明和评价了国家语言处理模式。具体地说,我们开发了国家语言方案模型,以自动1)将学术文件中的句号作为假设或不是假设进行检测(假想检测),2 将假设拆解为节点(构件)和链接(视象/联系关系)(建筑关系)和3)的自然语言处理模式,以加速发现、提取和组织社会科学出版物的理论发展(假设)。我们从因果关系(反向联系)和方向(积极、消极和非线性分类)的链接特征。我们的模式报告了所有三项任务的高性能衡量标准。虽然我们的模型建在Python,但我们已经使非程序员完全可以使用经过培训的模型。我们提供了安装和使用我们最新的用户界面模型的指示,我们通过最后的系统化模型来建议了我们的系统化模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
已删除
将门创投
5+阅读 · 2017年11月22日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
15+阅读 · 2019年6月25日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
已删除
将门创投
5+阅读 · 2017年11月22日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员