In this paper we study a maximization version of the classical Feedback Vertex Set (FVS) problem, namely, the Max Min FVS problem, in the realm of parameterized complexity. In this problem, given an undirected graph $G$, a positive integer $k$, the question is to check whether $G$ has a minimal feedback vertex set of size at least $k$. We obtain following results for Max Min FVS. 1) We first design a fixed parameter tractable (FPT) algorithm for Max Min FVS running in time $10^kn^{\mathcal{O}(1)}$. 2) Next, we consider the problem parameterized by the vertex cover number of the input graph (denoted by $\mathsf{vc}(G)$), and design an algorithm with running time $2^{\mathcal{O}(\mathsf{vc}(G)\log \mathsf{vc}(G))}n^{\mathcal{O}(1)}$. We complement this result by showing that the problem parameterized by $\mathsf{vc}(G)$ does not admit a polynomial compression unless coNP $\subseteq$ NP/poly. 3) Finally, we give an FPT-approximation scheme (fpt-AS) parameterized by $\mathsf{vc}(G)$. That is, we design an algorithm that for every $\epsilon >0$, runs in time $2^{\mathcal{O}\left(\frac{\mathsf{vc}(G)}{\epsilon}\right)} n^{\mathcal{O}(1)}$ and returns a minimal feedback vertex set of size at least $(1-\epsilon){\sf opt}$.
翻译:在本文中, 我们研究经典反馈 Vertex Set (FVS) 问题的最大化版本, 即在参数化复杂度范围内的 Max Min FVS 问题 。 在这个问题中, 问题在于一个未引导的图形$G$, 一个正整数$, 问题在于检查$G$是否有一个最小的反馈顶板, 大小至少为$k美元。 我们为 Max Min FVS 1 在最大 FVS (G) 设计一个固定参数( FPT) 的可移植算法, 即 运行于 10 kn ⁇ cQ} O} (1) 美元。 下一步, 我们考虑以输入图的顶层覆盖数来设定问题参数( 由 $\ mathf{ (G) 来设置一个最小反馈值( mathxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx)xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx