The problem of $X$-secure $T$-colluding symmetric Private Polynomial Computation (PPC) from coded storage system with $B$ Byzantine and $U$ unresponsive servers is studied in this paper. Specifically, a dataset consisting of $M$ files is stored across $N$ distributed servers according to $(N,K+X)$ Maximum Distance Separable (MDS) codes such that any group of up to $X$ colluding servers can not learn anything about the data files. A user wishes to privately evaluate one out of a set of candidate polynomial functions over the $M$ files from the system, while guaranteeing that any $T$ colluding servers can not learn anything about the identity of the desired function and the user can not learn anything about the $M$ data files more than the desired polynomial function evaluations, in the presence of $B$ Byzantine servers that can send arbitrary responses maliciously to confuse the user and $U$ unresponsive servers that will not respond any information at all. A novel symmetric PPC scheme using Lagrange encoding is proposed. This scheme achieves a PPC rate of $1-\frac{G(K+X-1)+T+2B}{N-U}$ with secrecy rate $\frac{G(K+X-1)+T}{N-(G(K+X-1)+T+2B+U)}$ and finite field size $N+\max\{K,N-(G(K+X-1)+T+2B+U)\}$, where $G$ is the maximum degree over all the candidate polynomial functions. Moreover, to further measure the efficiency of PPC schemes, upload cost, query complexity, server computation complexity and decoding complexity required to implement the scheme are analyzed. Remarkably, the PPC setup studied in this paper generalizes all the previous MDS coded PPC setups and the degraded schemes strictly outperform the best known schemes in terms of (asymptotical) PPC rate, which is the main concern of the PPC schemes.
翻译:本文研究的是由美元构成的由美元组成的数据集问题。 由美元( N, K+X) 最大距离分解( MDS) 代码存储的 $X 安全 $T$的 PT$的 PXPPC 私募的PPPC (PPC) 问题。 用户希望私下评估由美元( Byzantine) 和美元( 美元) 的编码存储系统提供的一套候选的美元( NPPC ) PPoncial- Polino Computuration( PPC) 。 用户希望对系统 $( 美元) 和美元( 美元) 的编码系统进行美元( PPPC) 和 美元( 美元) 的编码( 美元) 。 用户希望私下评估一套候选人的多价( 美元) 的多价( NM) 和 美元( 美元) 的编码系统,同时保证任何美元( 美元) colluds) 的编码服务器不能了解任何想要( 美元( G- G- mill) 美元) 标准( K) 规则, 和 数字( 数字( 美元) 数字+ G- mill) 标准( 标准( ) 标准( ) ) 的编码( ) 标准( ) ) 的编码( ) 规则是: