While the quantum query complexity of $k$-distinctness is known to be $O\left(n^{3/4-1/4(2^k-1)}\right)$ for any constant $k \geq 4$, the best previous upper bound on the time complexity was $\widetilde{O}\left(n^{1-1/k}\right)$. We give a new upper bound of $\widetilde{O}\left(n^{3/4-1/4(2^k-1)}\right)$ on the time complexity, matching the query complexity up to polylogarithmic factors. In order to achieve this upper bound, we give a new technique for designing quantum walk search algorithms, which is an extension of the electric network framework. We also show how to solve the welded trees problem in $O(n)$ queries and $O(n^2)$ time using this new technique, showing that the new quantum walk framework can achieve exponential speedups.
翻译:尽管 $k$-不同性问题的量子查询复杂度已知为 $O\left(n^{3/4-1/4(2^k-1)}\right)$,其中 $k \geq 4$ 为任意常数, 但在此之前所知的时间复杂度上界仅为 $\widetilde{O}\left(n^{1-1/k}\right)$。我们提供了一个新的时间复杂度上界,为 $\widetilde{O}\left(n^{3/4-1/4(2^k-1)}\right)$,这使得时间复杂度与查询复杂度相匹配,除了多项式对数因子以外。为了实现这个上界,我们提供了一个设计量子漫步搜索算法的新方法,这是电路网络框架的扩展。我们还展示了如何使用这个新技术在 $O(n)$ 查询和 $O(n^2)$ 时间内解决焊接树问题,展示了新的量子漫步框架可以实现指数加速。