We introduce a bottom-up model for jointly finding many boundary elements in an image, including edges, curves, corners and junctions. The model explains boundary shape in each small patch using a junction with M angles and a freely-moving vertex. Images are analyzed by solving a non-convex optimization problem using purposefully-designed algorithms, cooperatively finding M+2 junction values at every pixel. The resulting field of junctions is simultaneously an edge detector, a corner/junction detector, and a boundary-aware smoothing of regional appearance. We demonstrate how it behaves at different scales, and for both single-channel and multi-channel input. Notably, we find it has unprecedented resilience to noise: It succeeds at high noise levels where previous methods for segmentation and for edge, corner and junction detection fail.


翻译:我们引入一个自下而上的模式, 以共同在图像中找到许多边界元素, 包括边缘、 曲线、 角和交叉点。 该模型使用与 M 角度和自由移动的顶点的连接点来解释每个小片段的边界形状。 图像通过使用特意设计的算法解决非convex优化问题, 合作在每像素中寻找 M+2 交叉值来进行分析。 由此形成的交叉点领域同时是一个边缘探测器、 角/ 枢纽探测器, 以及一个区域外观的边界辨识平滑。 我们演示它在不同尺度上的表现, 以及单通道和多通道的输入 。 值得注意的是, 我们发现它具有前所未有的对噪音的抵抗力: 它在高噪声水平上成功, 以前的分割和边缘、 角和交界点探测方法都失败 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员