Robust real-time detection and motion forecasting of traffic participants is necessary for autonomous vehicles to safely navigate urban environments. In this paper, we present RV-FuseNet, a novel end-to-end approach for joint detection and trajectory estimation directly from time-series LiDAR data. Instead of the widely used bird's eye view (BEV) representation, we utilize the native range view (RV) representation of LiDAR data. The RV preserves the full resolution of the sensor by avoiding the voxelization used in the BEV. Furthermore, RV can be processed efficiently due to its compactness. Previous approaches project time-series data to a common viewpoint for temporal fusion, and often this viewpoint is different from where it was captured. This is sufficient for BEV methods, but for RV methods, this can lead to loss of information and data distortion which has an adverse impact on performance. To address this challenge we propose a simple yet effective novel architecture, \textit{Incremental Fusion}, that minimizes the information loss by sequentially projecting each RV sweep into the viewpoint of the next sweep in time. We show that our approach significantly improves motion forecasting performance over the existing state-of-the-art. Furthermore, we demonstrate that our sequential fusion approach is superior to alternative RV based fusion methods on multiple datasets.


翻译:对交通参与者进行强力实时探测和运动预测对于自主车辆安全航行城市环境来说是必要的。 在本文中,我们介绍了RV-FuseNet,这是直接从时间序列LIDAR数据进行联合探测和轨迹估计的一种新型端对端方法。我们使用LIDAR数据的本地范围视图(RV)代表方式,而不是广泛使用的鸟眼视图(BEV)代表方式,而是使用LIDAR数据的本地范围视图(RV)代表方式。RV通过避免BEV中使用的蒸气化来保持传感器的完整分辨率。此外,RV由于其紧凑性,可以高效地处理。以前的方法是项目时间序列数据,以共同的观点来进行时间聚合,而且这种观点往往与所捕捉的数据不同。这对BEV方法而言足够,但对于RDAR数据方法而言,这可能导致信息和数据扭曲的丢失,从而对业绩产生不利影响。为了应对这一挑战,我们提议了一个简单而有效的新结构,\ textit{Increcition Fision},通过按顺序对每次RV进行选择,最大限度地减少信息损失,方法是将每次RV的每个RV扫描到下一个周期的视角,我们以连续预测方式显示。我们目前的连续的进度方法表明我们的业绩表现。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
109+阅读 · 2020年12月22日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
【泡泡一分钟】3D物体的特征编码变种
泡泡机器人SLAM
4+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
3D-LaneNet: end-to-end 3D multiple lane detection
Arxiv
7+阅读 · 2018年11月26日
VIP会员
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
【泡泡一分钟】3D物体的特征编码变种
泡泡机器人SLAM
4+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
Top
微信扫码咨询专知VIP会员