Explainable AI (XAI) has established itself as an important component of AI-driven interactive systems. With Augmented Reality (AR) becoming more integrated in daily lives, the role of XAI also becomes essential in AR because end-users will frequently interact with intelligent services. However, it is unclear how to design effective XAI experiences for AR. We propose XAIR, a design framework that addresses "when", "what", and "how" to provide explanations of AI output in AR. The framework was based on a multi-disciplinary literature review of XAI and HCI research, a large-scale survey probing 500+ end-users' preferences for AR-based explanations, and three workshops with 12 experts collecting their insights about XAI design in AR. XAIR's utility and effectiveness was verified via a study with 10 designers and another study with 12 end-users. XAIR can provide guidelines for designers, inspiring them to identify new design opportunities and achieve effective XAI designs in AR.
翻译:可解释人工智能(XAI)已经成为人工智能驱动交互系统的重要组成部分。随着增强现实(AR)越来越多地融入生活,XAI 在 AR 中的作用也变得至关重要,因为最终用户将频繁地与智能服务进行交互。然而,如何为 AR 设计有效的 XAI 经验尚不清楚。我们提出的 XAIR 是一个设计框架,它解决了在 AR 中何时、何种情况和如何提供人工智能输出的解释的问题。该框架基于对人机交互(HCI)研究和XAI 研究的多学科文献综述,对 500 多名最终用户进行了大规模调查,了解了他们对基于 AR 的解释的偏好,并且在三个专家讲习班中收集了他们关于在 AR 中设计 XAI 的见解。通过与 10 位设计师的研究以及另外一项 12 位最终用户的研究验证了 XAIR 的效用和有效性。XAIR 可以为设计师提供指南,激发他们识别新的设计机会并在 AR 中实现有效的 XAI 设计。