Disclosure of data analytics results has important scientific and commercial justifications. However, no data shall be disclosed without a diligent investigation of risks for privacy of subjects. Privug is a tool-supported method to explore information leakage properties of data analytics and anonymization programs. In Privug, we reinterpret a program probabilistically, using off-the-shelf tools for Bayesian inference to perform information-theoretic analysis of the information flow. For privacy researchers, Privug provides a fast, lightweight way to experiment with privacy protection measures and mechanisms. We show that Privug is accurate, scalable, and applicable to a range of leakage analysis scenarios.
翻译:数据分析结果的披露具有重要的科学和商业理由,然而,不认真调查对主体隐私的风险,则不得披露任何数据。Privug是一种工具支持的方法,用于探索数据分析和匿名程序的信息渗漏特性。在Privug,我们用现成的工具重新解释一个程序概率,用现成的工具进行贝叶斯人的推论,对信息流动进行信息理论分析。对于隐私研究人员来说,Privug提供了一种快速、轻便的方法来试验隐私保护措施和机制。我们表明,Privug是准确、可缩放和适用于一系列渗漏分析情景的。