Accurate labeling is essential for supervised deep learning methods. However, it is almost impossible to accurately and manually annotate thousands of images, which results in many labeling errors for most datasets. We proposes a local label point correction (LLPC) method to improve annotation quality for edge detection and image segmentation tasks. Our algorithm contains three steps: gradient-guided point correction, point interpolation and local point smoothing. We correct the labels of object contours by moving the annotated points to the pixel gradient peaks. This can improve the edge localization accuracy, but it also causes unsmooth contours due to the interference of image noise. Therefore, we design a point smoothing method based on local linear fitting to smooth the corrected edge. To verify the effectiveness of our LLPC, we construct a largest overlapping cervical cell edge detection dataset (CCEDD) with higher precision label corrected by our label correction method. Our LLPC only needs to set three parameters, but yields 30-40$\%$ average precision improvement on multiple networks. The qualitative and quantitative experimental results show that our LLPC can improve the quality of manual labels and the accuracy of overlapping cell edge detection. We hope that our study will give a strong boost to the development of the label correction for edge detection and image segmentation. We will release the dataset and code at https://github.com/nachifur/LLPC.
翻译:精确的标签是受监督深层学习方法的关键。 但是, 几乎不可能准确和人工地批注数千张图像, 从而导致大多数数据集出现许多标签错误。 我们建议使用本地标签点校正( LLPC) 方法来提高边缘检测和图像分割任务的批注质量。 我们的算法包含三个步骤: 梯度引导点校正、 点内插和本地点平滑。 我们通过将附加注释的点移到像素梯度峰值, 校正对象轮廓的标签。 这可以提高边缘本地化的准确性, 但由于图像噪声的干扰, 也会导致不光滑的轮廓。 因此, 我们设计了一种基于本地线性适合的点平滑法方法, 以平滑边边边边缘任务。 为了验证我们的LLPC, 我们用标签边端检测数据设置了最大的重叠性标签, 并且用我们的标签校正方法校正。 我们LLPC只需要设定三个参数, 但要在多个网络上产生30- 40美元的平均精确性改进。 质和定量实验结果显示我们LPC 的实验室/ 的升级检测质量和升级的升级校正将改进我们的标签的升级的标签质量, 我们的升级的升级的升级校正将改进我们的标签质量, 我们的升级的升级的校正。</s>