Randomized experiments, or "A/B" tests, remain the gold standard for evaluating the causal effect of a policy intervention or product change. However, experimental settings, such as social networks, where users are interacting and influencing one another, may violate conventional assumptions of no interference for credible causal inference. Existing solutions to the network setting include accounting for the fraction or count of treated neighbors in a user's network, yet most current methods do not account for the local network structure beyond simply counting the number of neighbors. Our study provides an approach that accounts for both the local structure in a user's social network via motifs as well as the treatment assignment conditions of neighbors. We propose a two-part approach. We first introduce and employ "causal network motifs", which are network motifs that characterize the assignment conditions in local ego networks; and then we propose a tree-based algorithm for identifying different network interference conditions and estimating their average potential outcomes. Our approach can account for social network theories, such as structural diversity and echo chambers, and also can help specify network interference conditions that are suitable to each experiment. We test our method on a synthetic network setting and on a real-world experiment on a large-scale network, which highlight how accounting for local structures can better account for different interference patterns in networks.
翻译:随机实验,或“A/B”测试,仍然是评估政策干预或产品变化的因果关系的黄金标准。然而,社会网络等实验环境,如用户相互互动和相互影响的社会网络等,可能违反不干预可信因果关系推断的传统假设。网络设置的现有解决方案包括计算用户网络中接受治疗的邻居的分数或数数,但大多数现行方法并不包括本地网络结构,而不只是计算邻居的人数。我们的研究提供了一种方法,既考虑到用户社交网络中的当地结构,又考虑到邻居的治疗条件。我们提出一个两部分的办法。我们首先采用并采用“causal网络模型”,这是当地自我网络中分配条件的典型网络模型;然后我们提出一种基于树本的算法,用于确定不同的网络干扰条件并估计其平均潜在结果。我们的方法可以考虑到社会网络理论,例如结构多样性和回声室,也可以帮助确定适合每个实验的网络干扰条件。我们先在合成网络中测试我们的方法,然后在现实世界范围内的网络中测试一个更好的网络干扰模式,在现实世界范围内的模型中,如何强调一个更好的网络的会计结构,在不同的规模上,如何强调一个更好的网络的会计结构。