We develop a flexible Erlang mixture model for survival analysis. The model for the survival density is built from a structured mixture of Erlang densities, mixing on the integer shape parameter with a common scale parameter. The mixture weights are constructed through increments of a distribution function on the positive real line, which is assigned a Dirichlet process prior. The model has a relatively simple structure, balancing flexibility with efficient posterior computation. Moreover, it implies a mixture representation for the hazard function that involves time-dependent mixture weights, thus offering a general approach to hazard estimation. We extend the model to handle survival responses corresponding to multiple experimental groups, using a dependent Dirichlet process prior for the group-specific distributions that define the mixture weights. Model properties, prior specification, and posterior simulation are discussed, and the methodology is illustrated with synthetic and real data examples.
翻译:我们开发了一个灵活的Errang混合物模型以进行生存分析。 生存密度模型来自一种结构化的埃朗密度混合物,将整形参数与共同的尺度参数混合在一起。 混合物重量是通过正正正线分配函数的递增来构造的, 该正正线是先前指定的 Dirichlet 进程。 该模型有一个相对简单的结构, 平衡灵活性和高效的后方计算。 此外, 它意味着危险函数的混合表示, 涉及时间依赖的混合物重量, 从而提供一个一般的危害估计方法。 我们扩展了该模型, 用于处理与多个实验组相对应的存活反应, 使用一个独立的diriclet 进程, 之前用于界定混合物重量的组合特定分布过程。 讨论了模型属性、 先前的规格和后方模拟, 并用合成的和真实的数据示例演示了该方法。