This paper proposes Bayes-optimal convolutional approximate message-passing (CAMP) for signal recovery in compressed sensing. CAMP uses the same low-complexity matched filter (MF) for interference suppression as approximate message-passing (AMP). To improve the convergence property of AMP for ill-conditioned sensing matrices, the so-called Onsager correction term in AMP is replaced by a convolution of all preceding messages. The tap coefficients in the convolution are determined so as to realize asymptotic Gaussianity of estimation errors via state evolution (SE) under the assumption of orthogonally invariant sensing matrices. An SE equation is derived to optimize the sequence of denoisers in CAMP. The optimized CAMP is proved to be Bayes-optimal for all orthogonally invariant sensing matrices if the SE equation converges to a fixed-point and if the fixed-point is unique. For sensing matrices with low-to-moderate condition numbers, CAMP can achieve the same performance as high-complexity orthogonal/vector AMP that requires the linear minimum mean-square error (LMMSE) filter instead of the MF.
翻译:本文建议使用低复度匹配过滤器来抑制干扰,作为近似传递信息(AMP) 。为了提高AMP对不完善的感测矩阵的趋同性,AMP中的所谓Onsager修正术语被所有先前信息的相近性变相所取代。在变相中的自控系数被确定为通过国家演化(SE)实现通过国家演化(SE)的误差的零吸度定值。SE等式的衍生出自优化CAMP中的食用人序列。如果SE方程与固定点趋同,且固定点独特,则优化的CAMP为所有或机动性传感矩阵的最佳巴伊斯-最佳性。对于具有低度至偏差性状态的感测矩阵,CAMP可以达到与高度或正振/可动性测偏差的SEMMMMM(MMMM)相比,要求最小的线性中程差(SE-MMMM)。