Virtual reality (VR) is an emerging technology that enables new applications but also introduces privacy risks. In this paper, we focus on Oculus VR (OVR), the leading platform in the VR space, and we provide the first comprehensive analysis of personal data exposed by OVR apps and the platform itself, from a combined networking and privacy policy perspective. We experimented with the Quest 2 headset, and we tested the most popular VR apps available on the official Oculus and the SideQuest app stores. We developed OVRseen, a methodology and system for collecting, analyzing, and comparing network traffic and privacy policies on OVR. On the networking side, we captured and decrypted network traffic of VR apps, which was previously not possible on OVR, and we extracted data flows (defined as <app, data type, destination>). We found that the OVR ecosystem (compared to the mobile and other app ecosystems) is more centralized, and driven by tracking and analytics, rather than by third-party advertising. We show that the data types exposed by VR apps include personally identifiable information (PII), device information that can be used for fingerprinting, and VR-specific data types. By comparing the data flows found in the network traffic with statements made in the apps' privacy policies, we discovered that approximately 70% of OVR data flows were not properly disclosed. Furthermore, we provided additional context for these data flows, including the purpose, which we extracted from the privacy policies, and observed that 69% were sent for purposes unrelated to the core functionality of apps.


翻译:虚拟现实( VR) 是允许新应用的新兴技术, 但也引入了隐私风险。 在本文中, 我们侧重于 VR 空间的主要平台 Oculus VR (OVR) 。 我们从网络和隐私政策的角度, 首次全面分析OVR 应用程序和平台本身暴露的个人数据。 我们实验了 Quest 2 headet, 我们测试了官方 Oculus 和 SideQuest 应用程序中最受欢迎的 VR 应用程序 。 我们开发了 OVR Seeen, 一个用于收集、分析、比较网络流量和隐私政策的方法和系统。 在网络方面, 我们捕获并破解了VR 应用程序和平台本身的网络流量。 我们发现, OVR 生态系统( 相对于移动和其他应用程序的生态系统) 更加集中, 由跟踪和分析驱动, 而不是由第三方广告驱动。 在网络的网络中, 数据类型( 包括 VR 数据流的可识别性数据流, 用于我们所发现的数据类型 ), 数据流中的数据类型 包括用于 VR 数据流中的可识别数据流 。

0
下载
关闭预览

相关内容

IEEE虚拟现实会议一直是展示虚拟现实(VR)广泛领域研究成果的主要国际场所,包括增强现实(AR),混合现实(MR)和3D用户界面中寻求高质量的原创论文。每篇论文应归类为主要涵盖研究,应用程序或系统,并使用以下准则进行分类:研究论文应描述有助于先进软件,硬件,算法,交互或人为因素发展的结果。应用论文应解释作者如何基于现有思想并将其应用到以新颖的方式解决有趣的问题。每篇论文都应包括对给定应用领域中VR/AR/MR使用成功的评估。 官网地址:http://dblp.uni-trier.de/db/conf/vr/
专知会员服务
92+阅读 · 2021年1月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
108+阅读 · 2020年10月27日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
6+阅读 · 2018年2月7日
VIP会员
相关VIP内容
专知会员服务
92+阅读 · 2021年1月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
108+阅读 · 2020年10月27日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员