Mechanistic, multicellular, agent-based models are commonly used to investigate tissue, organ, and organism-scale biology at single-cell resolution. The Cellular-Potts Model (CPM) is a powerful and popular framework for developing and interrogating these models. CPMs become computationally expensive at large space- and time- scales making application and investigation of developed models difficult. Surrogate models may allow for the accelerated evaluation of CPMs of complex biological systems. However, the stochastic nature of these models means each set of parameters may give rise to different model configurations, complicating surrogate model development. In this work, we leverage denoising diffusion probabilistic models to train a generative AI surrogate of a CPM used to investigate in vitro vasculogenesis. We describe the use of an image classifier to learn the characteristics that define unique areas of a 2-dimensional parameter space. We then apply this classifier to aid in surrogate model selection and verification. Our CPM model surrogate generates model configurations 20,000 timesteps ahead of a reference configuration and demonstrates approximately a 22x reduction in computational time as compared to native code execution. Our work represents a step towards the implementation of DDPMs to develop digital twins of stochastic biological systems.
翻译:机制性、多细胞、基于代理的模型常用于在单细胞分辨率下研究组织、器官和生物体尺度的生物学。细胞-波茨模型(CPM)是开发和探究这些模型的一个强大且流行的框架。在大空间和时间尺度上,CPM 的计算成本变得高昂,使得已开发模型的应用和研究变得困难。代理模型可能允许加速评估复杂生物系统的 CPM。然而,这些模型的随机性意味着每组参数可能产生不同的模型配置,这使代理模型的开发复杂化。在这项工作中,我们利用去噪扩散概率模型来训练一个生成式 AI 代理,该代理基于用于研究体外血管生成的 CPM。我们描述了使用图像分类器来学习定义二维参数空间中独特区域的特征。然后,我们应用该分类器来辅助代理模型的选择和验证。我们的 CPM 模型代理生成比参考配置提前 20,000 个时间步的模型配置,并且与原生代码执行相比,计算时间减少了约 22 倍。我们的工作代表了向实施 DDPM 来开发随机生物系统的数字孪生迈出的一步。