State-of-the-art document dewarping techniques learn to predict 3-dimensional information of documents which are prone to errors while dealing with documents with irregular distortions or large variations in depth. This paper presents FDRNet, a Fourier Document Restoration Network that can restore documents with different distortions and improve document recognition in a reliable and simpler manner. FDRNet focuses on high-frequency components in the Fourier space that capture most structural information but are largely free of degradation in appearance. It dewarps documents by a flexible Thin-Plate Spline transformation which can handle various deformations effectively without requiring deformation annotations in training. These features allow FDRNet to learn from a small amount of simply labeled training images, and the learned model can dewarp documents with complex geometric distortion and recognize the restored texts accurately. To facilitate document restoration research, we create a benchmark dataset consisting of over one thousand camera documents with different types of geometric and photometric distortion. Extensive experiments show that FDRNet outperforms the state-of-the-art by large margins on both dewarping and text recognition tasks. In addition, FDRNet requires a small amount of simply labeled training data and is easy to deploy.


翻译:最新的文档扭曲技术学会预测在处理非正常扭曲或大变异的文件时容易出错的文件的三维信息。 本文展示了FDRNet, 即FDRNet。 FDRNet是一个傅里叶文件恢复网络, 它可以以可靠和简单的方式恢复不同扭曲的文件, 并改进对文件的识别。 FDRNet 侧重于傅里叶空间的高频部件, 收集大多数结构信息, 但外观基本没有退化。 它通过灵活Thin- Plate Spline转换使文件发生偏差, 可以有效处理各种变形, 而无需在培训中进行变形说明。 这些功能使得FDRNet能够从少量简单的标签化培训图像中学习, 所学的模型可以以复杂的几何扭曲的方式解动文件, 并准确地识别已修复的文本。 为了便利文件恢复研究, 我们创建了一套基准数据集, 由一千多个具有不同类型几何和光度扭曲的相机文件组成。 广泛的实验显示 FDRNet 超越了大边际的状态, 。 此外, FDRNet需要少量的简单配置数据。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Warped Dynamic Linear Models for Time Series of Counts
Arxiv
0+阅读 · 2022年4月14日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员