We investigate a class of multi-object rearrangement problems in which a robotic manipulator, capable of carrying an item and making item swaps, is tasked to sort items stored in lattices in a time-optimal manner. We systematically analyze the intrinsic optimality structure, which is fairly rich and intriguing, under different levels of item distinguishability (fully labeled or partially labeled) and different lattice dimensions. Focusing on the most practical setting of one and two dimensions, we develop efficient (low polynomial time) algorithms that optimally perform rearrangements on 1D lattices under both fully and partially labeled settings. On the other hand, we prove that rearrangement on 2D and higher dimensional lattices becomes computationally intractable to optimally solve. Despite their NP-hardness, we are able to again develop efficient algorithms for 2D fully and partially labeled settings that are asymptotically optimal, in expectation, assuming that the initial configuration is randomly selected. Simulation studies confirm the effectiveness of our algorithms in comparison to natural greedy best-first algorithms.
翻译:我们调查了一组多弹体重新排列问题,在这些问题中,能够携带物品和进行物品交换的机器人操纵者负责以最理想的时速对存放在拉托克中的物品进行分类。我们系统地分析内在最佳结构,这种结构相当丰富和令人感兴趣,存在于不同等级的可辨(标签标签或部分标签)和不同的拉特维度之下。我们关注一个和两个维度的最实用设置,我们开发了高效(低多元时间)算法,在完全和部分标签的环境下对1D拉特克进行最优化的重新排列。另一方面,我们证明2D和较高维特拉特克的重新排列在计算上变得难以以最佳方式解决。尽管其NP-硬性,我们仍能够再次为2D制定完全和部分标签环境的高效算法,这些算法是尽可能最佳的,但假设最初的配置是随机选择的。模拟研究证实了我们的算法在与自然贪婪第一算法相比是否有效。