Classifier-guided diffusion models have emerged as a powerful approach for conditional image generation, but they suffer from overconfident predictions during early denoising steps, causing the guidance gradient to vanish. This paper introduces two complementary contributions to address this issue. First, we propose a differentiable calibration objective based on the Smooth Expected Calibration Error (Smooth ECE), which improves classifier calibration with minimal fine-tuning and yields measurable improvements in Frechet Inception Distance (FID). Second, we develop enhanced sampling guidance methods that operate on off-the-shelf classifiers without requiring retraining. These include tilted sampling with batch-level reweighting, adaptive entropy-regularized sampling to preserve diversity, and a novel f-divergence-based sampling strategy that strengthens class-consistent guidance while maintaining mode coverage. Experiments on ImageNet 128x128 demonstrate that our divergence-regularized guidance achieves an FID of 2.13 using a ResNet-101 classifier, improving upon existing classifier-guided diffusion methods while requiring no diffusion model retraining. The results show that principled calibration and divergence-aware sampling provide practical and effective improvements for classifier-guided diffusion.
翻译:分类器引导的扩散模型已成为条件图像生成的重要方法,但其在早期去噪步骤中容易产生过度自信的预测,导致引导梯度消失。本文提出两个互补的改进方案以解决该问题。首先,我们基于平滑期望校准误差(Smooth ECE)提出可微分的校准目标,通过最小化微调量提升分类器校准性能,并在弗雷歇起始距离(FID)指标上获得可量化的改进。其次,我们开发了适用于现成分类器的增强采样引导方法,无需重新训练模型。这些方法包括:采用批次级重加权的倾斜采样、保持多样性的自适应熵正则化采样,以及新颖的基于f-散度的采样策略——该策略在保持模态覆盖的同时强化了类别一致性引导。在ImageNet 128×128数据集上的实验表明,使用ResNet-101分类器时,我们的散度正则化引导方法实现了2.13的FID分数,在无需重新训练扩散模型的前提下超越了现有分类器引导的扩散方法。研究结果证明,基于原理的校准与散度感知采样能为分类器引导的扩散模型提供实用且有效的改进。