半监督学习(SSL)取得了显著进展,催生了许多方法变体。然而,实践者在尝试部署这些方法时常常遇到性能不佳的挑战。在本文中,我们提出了一种名为FINESSL的新型SSL方法,通过适应预训练的基础模型显著解决了这一限制。我们识别了基础模型中固有的聚合偏差和认知偏差问题,并提出了一个简单而有效的解决方案,通过引入平衡边缘软最大值和解耦标签平滑。在广泛的实验中,我们证明了FINESSL在多个基准数据集上设立了SSL的新标准,训练成本降低了六倍以上,并且可以无缝集成各种微调和现代SSL算法。源码可在https://github.com/Gank0078/FineSSL获取。

成为VIP会员查看完整内容
17

相关内容

【NeurIPS2022】分布式自适应元强化学习
专知会员服务
24+阅读 · 2022年10月8日
【NeurIPS2022】VICRegL:局部视觉特征的自监督学习
专知会员服务
32+阅读 · 2022年10月6日
专知会员服务
12+阅读 · 2021年6月20日
专知会员服务
38+阅读 · 2021年3月29日
基于模型的强化学习综述
专知
42+阅读 · 2022年7月13日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Arxiv
174+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
494+阅读 · 2023年3月31日
Arxiv
81+阅读 · 2023年3月26日
VIP会员
相关VIP内容
【NeurIPS2022】分布式自适应元强化学习
专知会员服务
24+阅读 · 2022年10月8日
【NeurIPS2022】VICRegL:局部视觉特征的自监督学习
专知会员服务
32+阅读 · 2022年10月6日
专知会员服务
12+阅读 · 2021年6月20日
专知会员服务
38+阅读 · 2021年3月29日
相关资讯
基于模型的强化学习综述
专知
42+阅读 · 2022年7月13日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
相关论文
Arxiv
174+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
494+阅读 · 2023年3月31日
Arxiv
81+阅读 · 2023年3月26日
微信扫码咨询专知VIP会员