Artificial intelligence is finding its way into medical imaging, usually focusing on image reconstruction or enhancing analytical reconstructed images. However, optimizations along the complete processing chain, from detecting signals to computing data, enable significant improvements. Thus, we present an approach toward detector optimization using boosted learning by exploiting the concept of residual physics. In our work, we improve the coincidence time resolution (CTR) of positron emission tomography (PET) detectors. PET enables imaging of metabolic processes by detecting {\gamma}-photons with scintillation detectors. Current research exploits light-sharing detectors, where the scintillation light is distributed over and digitized by an array of readout channels. While these detectors demonstrate excellent performance parameters, e.g., regarding spatial resolution, extracting precise timing information for time-of-flight (TOF) becomes more challenging due to deteriorating effects called time skews. Conventional correction methods mainly rely on analytical formulations, theoretically capable of covering all time skew effects, e.g., caused by signal runtimes or physical effects. However, additional effects are involved for light-sharing detectors, so finding suitable analytical formulations can become arbitrarily complicated. The residual physics-based strategy uses gradient tree boosting (GTB) and a physics-informed data generation mimicking an actual imaging process by shifting a radiation source. We used clinically relevant detectors with a height of 19 mm, coupled to digital photosensor arrays. All trained models improved the CTR significantly. Using the best model, we achieved CTRs down to 198 ps (185 ps) for energies ranging from 300 keV to 700 keV (450 keV to 550 keV).


翻译:人工智能正在进入医学成像,通常侧重于图像重建或增强分析再造图像。然而,在整个处理链中,从检测信号到计算数据,优化了整个处理链的优化,从而实现了显著的改进。因此,我们展示了一种通过利用残余物理概念进行强化学习的检测优化方法。在我们的工作中,我们改进了正对离子排放成像仪(PET)的巧合时间分辨率(CTR ) 。PET 能够通过检测反光探测器来成像代谢过程。当前研究利用了光共享探测器,即闪烁光分布到计算数据,通过一系列读出渠道进行数字化。虽然这些探测器展示了极好的性能参数,例如空间分辨率,为飞行时间提取精确的定时信息(TF),但随着时间的恶化,我们提高了时间。常规修正方法主要依靠分析模型的配置,理论上能够覆盖所有时间基流效应,例如由信号运行时间或物理效果造成的。然而,利用了50号光相光线光线光线光线光线,通过一系列读取数据渠道进行数字化数字化。这些探测器使用了一个精确的精确的温度测算,因此,因此,我们使用的C- 利用了一种精确变压的研磨变动的研测过程的C-,从而找到了的研磨变动的研测,因此使用了一个精确的C-级的研磨变动的C-级的研磨变动的C-,因此使用了一个精确的研制的研制的C- 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月27日
Arxiv
0+阅读 · 2023年3月24日
Arxiv
12+阅读 · 2019年4月9日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员