This paper investigates the role of quadrature exactness in the approximation scheme of hyperinterpolation. Constructing a hyperinterpolant of degree $n$ requires a positive-weight quadrature rule with exactness degree $2n$. We examine the behavior of such approximation when the required exactness degree $2n$ is relaxed to $n+k$ with $0<k\leq n$. Aided by the Marcinkiewicz--Zygmund inequality, we affirm that the $L^2$ norm of the exactness-relaxing hyperinterpolation operator is bounded by a constant independent of $n$, and this approximation scheme is convergent as $n\rightarrow\infty$ if $k$ is positively correlated to $n$. Thus, the family of candidate quadrature rules for constructing hyperinterpolants can be significantly enriched, and the number of quadrature points can be considerably reduced. As a potential cost, this relaxation may slow the convergence rate of hyperinterpolation in terms of the reduced degrees of quadrature exactness. Our theoretical results are asserted by numerical experiments on three of the best known quadrature rules: the Gauss quadrature, the Clenshaw--Curtis quadrature, and the spherical $t$-designs.
翻译:本文调查了二次曲线精确度在超内推法近似机制中所起的作用。 构建一个高度的超度间推值 $n 需要一个正重的二次曲线规则, 准确度为$2n美元 。 当要求的准确度为$2n美元, 放松为$+k美元, 以0. k\leqn 美元为单位时, 我们检查这种近似值的行为。 由马辛基维茨- Zygmund 的不平等性帮助, 我们确认, 精确度和放松超度操作员的2美元标准 受一个以美元为单位的恒定独立的标准的约束, 而如果美元正值为$2n\rightrowror\infty $, 如果美元正值与$n美元为正值, 我们的近似方案会以 $n\rightrightrockt$为单位。 因此, 建造超interpinterpolts的候选二次二次二次曲线规则的组合可以大大地丰富,, 量点点数可以大大降低。 作为潜在成本, 这种放松可能减慢慢化, 。 。 度的超间推慢化 。 我们的理论结果是由三个已知四方的数值实验, 。