The missing signal caused by the objects being occluded or an unstable sensor is a common challenge during data collection. Such missing signals will adversely affect the results obtained from the data, and this issue is observed more frequently in robotic tactile perception. In tactile perception, due to the limited working space and the dynamic environment, the contact between the tactile sensor and the object is frequently insufficient and unstable, which causes the partial loss of signals, thus leading to incomplete tactile data. The tactile data will therefore contain fewer tactile cues with low information density. In this paper, we propose a tactile representation learning method, named TacMAE, based on Masked Autoencoder to address the problem of incomplete tactile data in tactile perception. In our framework, a portion of the tactile image is masked out to simulate the missing contact region. By reconstructing the missing signals in the tactile image, the trained model can achieve a high-level understanding of surface geometry and tactile properties from limited tactile cues. The experimental results of tactile texture recognition show that our proposed TacMAE can achieve a high recognition accuracy of 71.4% in the zero-shot transfer and 85.8% after fine-tuning, which are 15.2% and 8.2% higher than the results without using masked modeling. The extensive experiments on YCB objects demonstrate the knowledge transferability of our proposed method and the potential to improve efficiency in tactile exploration.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员