We introduce an ensemble of artificial intelligence models for gravitational wave detection that we trained in the Summit supercomputer using 32 nodes, equivalent to 192 NVIDIA V100 GPUs, within 2 hours. Once fully trained, we optimized these models for accelerated inference using NVIDIA TensorRT. We deployed our inference-optimized AI ensemble in the ThetaGPU supercomputer at Argonne Leadership Computer Facility to conduct distributed inference. Using the entire ThetaGPU supercomputer, consisting of 20 nodes each of which has 8 NVIDIA A100 Tensor Core GPUs and 2 AMD Rome CPUs, our NVIDIA TensorRT-optimized AI ensemble processed an entire month of advanced LIGO data (including Hanford and Livingston data streams) within 50 seconds. Our inference-optimized AI ensemble retains the same sensitivity of traditional AI models, namely, it identifies all known binary black hole mergers previously identified in this advanced LIGO dataset and reports no misclassifications, while also providing a 3X inference speedup compared to traditional artificial intelligence models. We used time slides to quantify the performance of our AI ensemble to process up to 5 years worth of advanced LIGO data. In this synthetically enhanced dataset, our AI ensemble reports an average of one misclassification for every month of searched advanced LIGO data. We also present the receiver operating characteristic curve of our AI ensemble using this 5 year long advanced LIGO dataset. This approach provides the required tools to conduct accelerated, AI-driven gravitational wave detection at scale.
翻译:我们用32个节点在峰会超级计算机中培训了一组人工智能模型,用于重力波探测。 我们用32个节点,相当于192个 NVIDIA V100 GPUs,在2小时内在峰会超级计算机中培训了一组人工智能模型。 经过充分培训,我们优化了这些模型,用NVIDIA TansorRT 优化了加速推导速度。 我们在阿格龙领导型计算机设施的 ThetaGPU超级计算机设施中安装了一套人工智能混合模型,以进行分布式推导。 使用整个 ThetaGPU超级计算机, 其中包括20个节点,其中每个节点有8个 NVIDIA A100 Tensor Core GPUs和2个AM MD Rome CPUs, 我们的NVIDA TensorRT-O-Opoptime AI 共和全月高级LIGO(包括HFord和Livingston数据流流流) 数据。 我们的推导-Orble IP IP, 保持了传统人工智能模型的同一智能模型的敏感黑洞的敏感性, 并用了我们这一高级智能数据转换数据, 5年的高级智能测序数据报告, 也用了一个高级智能测算。