GenAI-based coding assistants have disrupted software development. Their next generation is agent-based, operating with more autonomy and potentially without human oversight. One challenge is to provide AI agents with sufficient context about the software projects they operate in. Like humans, AI agents require contextual information to develop solutions that are in line with the target architecture, interface specifications, coding guidelines, standard workflows, and other project-specific policies. Popular AI agents for software development (e.g., Claude Code) advocate for maintaining tool-specific version-controlled Markdown files that cover aspects such as the project structure, building and testing, or code style. The content of these files is automatically added to each prompt. AGENTS$.$md has emerged as a potential standard that consolidates tool-specific formats. However, little is known about whether and how developers adopt this format. Therefore, in this paper, we present the results of a preliminary study investigating the adoption of AI configuration files in 466 open-source software projects, what information developers provide in these files, how they present that information, and how the files evolve over time. Our findings indicate that there is no established structure yet, and that there is a lot of variation in terms of how context is provided (descriptive, prescriptive, prohibitive, explanatory, conditional). We see great potential in studying which modifications in structure or presentation can positively affect the quality of the generated content. Finally, our analysis of commits modifying AGENTS$.$md files provides first insights into how projects continuously extend and maintain these files. We conclude the paper by outlining how the adoption of AI configuration files provides a unique opportunity to study real-world prompt and context engineering.
翻译:基于生成式人工智能的代码助手已对软件开发领域产生颠覆性影响。其下一代技术是基于智能体的系统,这类系统以更高的自主性运行,且可能无需人工监督。其中一个挑战在于如何为AI智能体提供其所在软件项目的充分上下文信息。与人类类似,AI智能体需要上下文信息来开发符合目标架构、接口规范、编码准则、标准工作流程及其他项目特定策略的解决方案。当前流行的软件开发AI智能体(例如Claude Code)提倡维护工具特定的、版本可控的Markdown文件,这些文件涵盖项目结构、构建与测试、代码风格等方面。这些文件的内容会被自动添加到每个提示中。AGENTS$.$md作为一种潜在标准应运而生,它整合了各类工具特定的格式。然而,关于开发者是否以及如何采用这种格式,目前知之甚少。因此,本文呈现了一项初步研究的结果,该研究调查了466个开源软件项目中AI配置文件的采用情况,包括开发者在这些文件中提供何种信息、如何呈现这些信息,以及文件如何随时间演变。我们的研究结果表明,目前尚未形成固定的结构,且在上下文提供方式(描述性、规定性、禁止性、解释性、条件性)上存在很大差异。我们认为,研究结构或呈现方式的哪些修改能对生成内容的质量产生积极影响具有巨大潜力。最后,我们对修改AGENTS$.$md文件的提交记录进行了分析,初步揭示了项目如何持续扩展和维护这些文件。本文最后指出,AI配置文件的采用为研究现实世界中的提示与上下文工程提供了独特机遇。