Our confidence set quantifies the statistical uncertainty from data-driven cluster assignment in clustered panel models. It covers the true cluster memberships jointly for all units with pre-specified probability and is constructed by inverting many simultaneous unit-specific one-sided tests for group membership. We justify our approach under $N, T \to \infty$ asymptotics using tools from high-dimensional statistics, some of which we extend or develop in this paper. We provide an empirical application as well as Monte Carlo evidence that the confidence set has adequate coverage in finite samples.
翻译:我们的信心设定量化了数据驱动的组群任务在分组小组模式中的统计不确定性,它涵盖了所有具有预先确定概率的单位的真正组群组成情况,其构建方式是倒置许多针对特定单位同时对组群成员的片面测试。我们有理由使用高维统计工具(我们在本文件中推广或发展了其中一些工具)来证明我们的方法在“T”和“infty$”之下。我们提供了经验应用软件以及蒙特卡洛证据,证明所设定的信任足以覆盖有限的样本。