In this work, we study the event occurrences of individuals interacting in a network. To characterize the dynamic interactions among the individuals, we propose a group network Hawkes process (GNHP) model whose network structure is observed and fixed. In particular, we introduce a latent group structure among individuals to account for the heterogeneous user-specific characteristics. A maximum likelihood approach is proposed to simultaneously cluster individuals in the network and estimate model parameters. A fast EM algorithm is subsequently developed by utilizing the branching representation of the proposed GNHP model. Theoretical properties of the resulting estimators of group memberships and model parameters are investigated under both settings when the number of latent groups $G$ is over-specified or correctly specified. A data-driven criterion that can consistently identify the true $G$ under mild conditions is derived. Extensive simulation studies and an application to a data set collected from Sina Weibo are used to illustrate the effectiveness of the proposed methodology.
翻译:在这项工作中,我们研究个人在网络中互动的事件发生情况。为了描述个人之间的动态互动,我们提议了一个集体网络 Hawkes 进程(GNHP) 模型,其网络结构被观察和固定。特别是,我们引入了个人之间的潜在群体结构,以说明不同用户的具体特点。我们建议了一种最大可能性的方法,在网络中同时将个人分组,并估计模型参数。随后,利用拟议的GNHP模式的分支代表,开发了一个快速EM算法。 由此产生的集团成员估计员和模型参数的理论性质,在确定过量或正确指明了潜在群体$G$时,在两种情况下都受到调查。一个以数据为驱动的标准可以始终在温和条件下确定真正的$G$。使用了广泛的模拟研究和对从Sina Weibo收集的数据集的应用,以说明拟议方法的有效性。