Magnetic Resonance Spectroscopy (MRS) is a noninvasive tool to reveal metabolic information. One challenge of 1H-MRS is the low Signal-Noise Ratio (SNR). To improve the SNR, a typical approach is to perform Signal Averaging (SA) with M repeated samples. The data acquisition time, however, is increased by M times accordingly, and a complete clinical MRS scan takes approximately 10 minutes at a common setting M=128. Recently, deep learning has been introduced to improve the SNR but most of them use the simulated data as the training set. This may hinder the MRS applications since some potential differences, such as acquisition system imperfections, and physiological and psychologic conditions may exist between the simulated and in vivo data. Here, we proposed a new scheme that purely used the repeated samples of realistic data. A deep learning model, Refusion Long Short-Term Memory (ReLSTM), was designed to learn the mapping from the low SNR time-domain data (24 SA) to the high SNR one (128 SA). Experiments on the in vivo brain spectra of 7 healthy subjects, 2 brain tumor patients and 1 cerebral infarction patient showed that only using 20% repeated samples, the denoised spectra by ReLSTM could provide comparable estimated concentrations of metabolites to 128 SA. Compared with the state-of-the-art low-rank denoising method, the ReLSTM achieved the lower relative error and the Cram\'er-Rao lower bounds in quantifying some important biomarkers. In summary, ReLSTM can perform high-fidelity denoising of the spectra under fast acquisition (24 SA), which would be valuable to MRS clinical studies.


翻译:磁共振光谱( MRS) 是一个非侵入性工具, 用于披露代谢信息。 1H- MRS 的挑战之一是信号- 信号- 噪音比率( SNR) 低。 要改进 SNR, 典型的方法是用M反复样本进行信号动画(SA) 。 然而,数据采集时间相应增加 m times, 完整的临床IMRS扫描在通用设置M=128时需要大约10分钟。 最近, 引入了深度学习来改进 SNR, 但他们大多使用模拟数据作为培训集。 这可能会妨碍 MRS的应用, 因为某些潜在的差异, 如获取系统不完善, 以及生理和心理条件条件可能存在模拟和活性数据( SSA) 。 我们在这里提出了一个完全使用现实数据重复样本的新计划。 一个深层次的学习模型, Remurvil- Reducal- 短期内存(ReLSTM), 目的是学习从低级SNR( 24 SA) 到高级 SNR (128 SA) 一级。 低级的低级 的 的DNA中, 只能通过对20 Restal- recol- recol- real Restal 进行实验进行实验研究, 20- recol- recolal 的实验, 10 10 直径中, 直径 直径 直径 直系中, 直判 直测 直测了20个 直 直 直 直径 直径 直径 直径, 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员