Video transmission over the backhaul link in cloudedge collaborative networks usually suffers security risks. Only a few existing studies focus on ensuring secure backhaul link transmission. However, video content characteristics, which have significant effects on quality of experience (QoE), are ignored in the study. In this paper, we investigate the QoE-driven crosslayer optimization of secure video transmission over the backhaul link in cloud-edge collaborative networks. First, we establish the secure transmission model for backhaul link by considering video encoding and MEC-caching in a distributed cache scenario. Then, based on the established model, a joint optimization problem is formulated with the objective of improving user QoE and reducing transmission latency under the constraints of MEC capacity. To solve the optimization problem, we propose two algorithms: a near optimal iterative algorithm based on relaxation and branch and bound method (MC-VEB), and a greedy algorithm with low computational complexity (Greedy MC-VEB). Simulation results show that our proposed MC-VEB can greatly improve the user QoE and reduce transmission latency within security constraints, and the proposed Greedy MC-VEB can obtain the tradeoff between the user QoE and the computational complexity.


翻译:在云端合作网络的背水链路上的安全视频传输,通常有安全风险;只有少数几个现有研究侧重于确保安全回水连接传输;然而,对经验质量有重大影响的视频内容特征(QoE),在研究中忽略了这些特征;在本文中,我们调查了在云端合作网络的后水道链接上安全视频传输的由QE驱动的跨层安全视频传输在云端合作网络的后水道链接上的安全视频传输。首先,我们通过考虑视频编码和在分布式缓存假设情景中缓存视频,为后水道链接建立了安全传输模式。然后,根据既定模型,制定了联合优化问题,目的是改进用户的QoE,减少在MEC能力制约下对经验质量(QoE)产生重大影响(QoE),减少传播延迟时间;为解决优化问题,我们提出了两种算法:一种基于放松和分支以及约束方法(MC-VEB)的近最佳互动算法,以及一种计算复杂性低的贪婪算法(Greedy MC-VEB);模拟结果显示,我们提议的MC-VB可以大大改进用户的QEEEE,减少安全限制范围内用户之间的传输,减少用户之间的传输。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
53+阅读 · 2020年3月16日
专知会员服务
109+阅读 · 2020年3月12日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年3月5日
Arxiv
6+阅读 · 2018年2月7日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员