Video transmission over the backhaul link in cloudedge collaborative networks usually suffers security risks. Only a few existing studies focus on ensuring secure backhaul link transmission. However, video content characteristics, which have significant effects on quality of experience (QoE), are ignored in the study. In this paper, we investigate the QoE-driven crosslayer optimization of secure video transmission over the backhaul link in cloud-edge collaborative networks. First, we establish the secure transmission model for backhaul link by considering video encoding and MEC-caching in a distributed cache scenario. Then, based on the established model, a joint optimization problem is formulated with the objective of improving user QoE and reducing transmission latency under the constraints of MEC capacity. To solve the optimization problem, we propose two algorithms: a near optimal iterative algorithm based on relaxation and branch and bound method (MC-VEB), and a greedy algorithm with low computational complexity (Greedy MC-VEB). Simulation results show that our proposed MC-VEB can greatly improve the user QoE and reduce transmission latency within security constraints, and the proposed Greedy MC-VEB can obtain the tradeoff between the user QoE and the computational complexity.
翻译:在云端合作网络的背水链路上的安全视频传输,通常有安全风险;只有少数几个现有研究侧重于确保安全回水连接传输;然而,对经验质量有重大影响的视频内容特征(QoE),在研究中忽略了这些特征;在本文中,我们调查了在云端合作网络的后水道链接上安全视频传输的由QE驱动的跨层安全视频传输在云端合作网络的后水道链接上的安全视频传输。首先,我们通过考虑视频编码和在分布式缓存假设情景中缓存视频,为后水道链接建立了安全传输模式。然后,根据既定模型,制定了联合优化问题,目的是改进用户的QoE,减少在MEC能力制约下对经验质量(QoE)产生重大影响(QoE),减少传播延迟时间;为解决优化问题,我们提出了两种算法:一种基于放松和分支以及约束方法(MC-VEB)的近最佳互动算法,以及一种计算复杂性低的贪婪算法(Greedy MC-VEB);模拟结果显示,我们提议的MC-VB可以大大改进用户的QEEEE,减少安全限制范围内用户之间的传输,减少用户之间的传输。