International standardization bodies (IEEE and ITU-T) working on the evolution of transmission technologies are still considering traditional direct detection solutions for the most relevant short reach optical link applications, that are Passive Optical Networks (PON) and intra-data center interconnects. Anyway, future jumps towards even higher bit rates per wavelength will require a complete paradigm shift, moving towards coherent technologies. In this paper, we thus study both analytically and experimentally the scaling laws of unamplified coherent transmission in the short-reach communications ecosystems. We believe that, given the extremely tight techno-economic constraints, such a revolutionary transition towards coherent in short-reach first requires a very detailed study of its intrinsic capabilities in largely extending the limitation currently imposed by direct detection systems. To this end, this paper focuses on the ultimate physical layer limitations of unamplified coherent systems in terms of bit rate and power budget. The main parameters of our performance estimation model are extracted through fitting with a set of experimental characterizations and later used as the starting point of a scaling laws study regarding local oscillator power, modulator-induced attenuation, bit rate, and maximum achievable power budget. The analytically predicted performance is then verified through transmission experiments, including a demonstration on a 37-km installed metropolitan dark fiber in the city of Turin.
翻译:研究传输技术演变的国际标准化机构(IEEE和ITU-T)仍在考虑对最相关的短距离光学连接应用,即被动光学网络和数据中心内部连接,采用传统直接探测办法,这些应用是被动光学网络和内部数据中心。不管怎样,今后每波长跃升比特率甚至更高,需要彻底的范式转变,向一致的技术转变。在本文件中,我们因此从分析和实验两方面研究在短距离通信生态系统中未经强化的一致传输的尺度法。我们认为,鉴于技术-经济限制极为紧张,这种革命性转变首先向距离较近的一致的光学连接应用,需要非常详细地研究其内在能力,以在很大程度上扩大目前由直接探测系统施加的限制。为此,本文件侧重于未加强化的统一系统在比特率和电力预算方面最终的物理层限制。我们业绩估计模型的主要参数是通过与一套实验性特征进行抽取,后来用作关于本地观测器能力、调控导速度、比特率率率和37号最大城市预测性能通过城市预算进行预测性分析。